Questions & Answers - Ask Your Doubts
Ask your doubts to Learn New things everyday
Filters
Latest Questions
CBSE
Mathematics
Derivative of logarithmic functions
What is derivative of $ y = \ln \left( {\ln \left( x \right)} \right) $ with respect to $ x $ ?
CBSE
Mathematics
Derivative of logarithmic functions
How do you find the derivative of $ y=\ln \left( \sin x \right) $ ?
CBSE
Mathematics
Derivative of logarithmic functions
How do you find the derivative of $y = \ln \left| {\sec x + \tan x} \right|$?

CBSE
Mathematics
Derivative of logarithmic functions
How do you find the derivative of \[\log(8x – 1)\] ?

CBSE
Mathematics
Derivative of logarithmic functions
What is the derivative of \[{\log _3}x\]?
CBSE
Mathematics
Derivative of logarithmic functions
Find the derivative of \[{\log _{10}}x\] with respect to \[x\].
CBSE
Mathematics
Derivative of logarithmic functions
If $x > 0$ and ${\log _3}x + {\log _3}\left( {\sqrt x } \right) + {\log _3}\left( {\sqrt[4]{x}} \right) + ... = 4$ , then $x$ equals
(1) $9$
(2) $81$
(3) $1$
(4) $27$
CBSE
Mathematics
Derivative of logarithmic functions
The first derivative of the function $\sin 2x\cos 2x\cos 3x + {\log _2}{2^{x + 3}}$ with respect to x at $x = \pi $ is:
(A) $2$
(B) $ - 1$
(C) $1$
(D) None of these

CBSE
Mathematics
Derivative of logarithmic functions
FInd the differentiation $\dfrac{d}{{dx}}\log (\sec x + \tan x) = $
$1)\cos ecx$
$2)\sec x$
$3)\tan x$
$4)\cos x$

CBSE
Mathematics
Derivative of logarithmic functions
The Local maximum value of the function $\dfrac{{\log x}}{x}$ is
A) $e$
B) $1$
C) $\dfrac{1}{e}$
D) $2e$
CBSE
Mathematics
Derivative of logarithmic functions
Derivative of ${\log _{10}}x$ with respect to ${x^2}$ is;
$\left( 1 \right)2{x^2}{\log _e}10$
$\left( 2 \right){\log _{10}}\dfrac{e}{{2{x^2}}}$
$\left( 3 \right){\log _e}\dfrac{{10}}{{2{x^2}}}$
$\left( 4 \right){x^2}{\log _e}10$
CBSE
Mathematics
Derivative of logarithmic functions
If $y{\text{ is a function of }}x$ and $\log \left( {x + y} \right) = 2xy$ , then the value of $y'\left( 0 \right)$ is :
$\left( 1 \right)1$
$\left( 2 \right) - 1$
$\left( 3 \right)2$
$\left( 4 \right)0$
Prev
1
2
3
4
5
Next