Questions & Answers - Ask Your Doubts
Ask your doubts to Learn New things everyday
Filters
Latest Questions
CBSE
Mathematics
Angles of a parallelogram
In a parallelogram $ABCD$ if angle $D = 125^\circ $, then the other angles are?
CBSE
Mathematics
Angles of a parallelogram
Show that the angle bisectors of a parallelogram form a rectangle.

CBSE
Mathematics
Angles of a parallelogram
In quadrilateral ABCD,\[AB\parallel CD\]\[\angle D = 2\angle B\], \[AD = b\] and \[CD = a\] then length of side AB is
A.\[a + 4b\]
B.\[a - 3b\]
C.\[a - 2b\]
D.\[a + b\]
CBSE
Mathematics
Angles of a parallelogram
Adjacent angles in a parallelogram are
(A) complementary
(B) Supplementary
(C) ${120^ \circ }$
(D) None of the above.

CBSE
Mathematics
Angles of a parallelogram
PQRS is a parallelogram. QM is the height from Q to SR and QN is the height from Q to PS. If SR = 12 cm and QM = 7.6 cm, then find QN if PS = 8 cm.

  
CBSE
Mathematics
Angles of a parallelogram
ABCD is a quadrilateral inscribed in a circle with center O, \[\angle ADC = {130^ \circ }\] and \[AD = DC\]. Calculate:
(i) reflex \[\angle AOC\]
(ii) \[\angle ABC\]
(iii) \[\angle AOD\]


CBSE
Mathematics
Angles of a parallelogram
In the given figure $ABCD$ is a parallelogram. Find the angles $x{\text{ and }}y$

CBSE
Mathematics
Angles of a parallelogram
In the adjoining figure $ABCD$ is a parallelogram in which $\angle CAD = 40^\circ $, $\angle BAC = 35^\circ $ and $\angle COD = 65^\circ $. Calculate
A) $\angle ABD$
B) $\angle BDC$
C) $\angle CBD$


CBSE
Mathematics
Angles of a parallelogram
Is quadrilateral ABCD a parallelogram, if $\angle A=70{}^\circ $ and $\angle C=65{}^\circ $ ? Give reason.
CBSE
Mathematics
Angles of a parallelogram
Find the measure of all the angles of the parallelogram if one angle is 24 less than twice the smallest angle.
CBSE
Mathematics
Angles of a parallelogram
In a parallelogram, the sum of adjacent angles is
A) $90^\circ$
B) $180^\circ$
C) $270^\circ$
D) $360^\circ$
CBSE
Mathematics
Angles of a parallelogram
Sum of the adjacent angles of a parallelogram is equal to
A) 60$^\circ $
B) 90$^\circ $
C) 150$^\circ $
D) 180$^\circ $
Prev
1
2
Next