Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# Evaluate the value of $\int\limits_0^\pi {{{\cos }^3}xdx}$.A. 0B. 1C. -1D. $\dfrac{1}{{2\sqrt 2 }}$

Last updated date: 17th Apr 2024
Total views: 35.1k
Views today: 1.35k
Verified
35.1k+ views
Hint: We will apply the definite integral property to rewrite the given definite integral and simplify it by using trigonometry ratios of supplementary angle. Add both of them to get the value of the given integral.

Formula Used:
$\int\limits_b^a {f\left( x \right)dx} = \int\limits_b^a {f\left( {a - x} \right)dx}$

Complete step by step solution:
Given integration $\int\limits_0^\pi {{{\cos }^3}xdx}$.
Let $I = \int\limits_0^\pi {{{\cos }^3}xdx}$ ……(i)
Apply the formula $\int\limits_b^a {f\left( x \right)dx} = \int\limits_b^a {f\left( {a - x} \right)dx}$
$I = \int\limits_0^\pi {{{\cos }^3}\left( {\pi - x} \right)dx}$
We know $\cos \left( {\pi - x} \right) = - \cos x$.
$I = - \int\limits_0^\pi {\cos xdx}$ ….(ii)
$I + I = \int\limits_0^\pi {{{\cos }^3}xdx} - \int\limits_0^\pi {{{\cos }^3}xdx}$
$\Rightarrow 2I = 0$
$\Rightarrow I = 0$

Option ‘A’ is correct

$\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( t \right)dt}$
$\int_a^b {f\left( x \right)dx} = \int_b^a {f\left( x \right)dx}$
$\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx}$
$\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx}$
Note: To solve the question, you need to know all properties of the definite integral. Since the lower limit of the given integration is zero, so we will apply $\int\limits_b^a {f\left( x \right)dx} = \int\limits_b^a {f\left( {a - x} \right)dx}$. Then we will use the supplementary angle to simplify it and add them.