

Class 12 - Important Formulas

Chapter 4 - Moving Charges and Magnetism

S.No.	Term	Description
1	Biot-Savart law	Magnetic field \mathbf{dB} at any point whose position vector is \mathbf{r} wrt current element $d\mathbf{l}$ is given by $d\mathbf{B} = \frac{\mu_0 I}{4\pi} \frac{(d\mathbf{l} \times \mathbf{r})}{r^3}$
2	Magnetic field due to long current carrying conductor	$B = \frac{\mu_0 2I}{4\pi r}$
3	Magnetic field at centre of a circular loop	$B = \frac{\mu_0 I}{2r}$
4	Magnetic field at centre of coil of n turns	$B = \frac{\mu_0 I n}{2r}$
5	Magnetic field on the axis of a circular loop	$B = \frac{\mu_0 I r^2}{2(r^2 + x^2)^{3/2}}$ if there are n turns in the coil then $B = \frac{\mu_0 I n r^2}{2(r^2 + x^2)^{3/2}}$
6	Ampere's circuital law	$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I$
7	Field due to toroidal solenoid	$B = \mu_0 n I$
8	Field inside straight solenoid	$B = \mu_0 n I$ and direction of field is parallel to the axis of solenoid
9	Force on moving charge in magnetic field	$\mathbf{F} = q(\mathbf{v} \times \mathbf{B})$ Direction of force is perpendicular to both \mathbf{v} and \mathbf{B}
10	Force on current carrying conductor in the magnetic field	$\mathbf{F} = I(\mathbf{l} \times \mathbf{B})$ where \mathbf{l} is the length of the conductor in the direction of current in it
11	Force between two parallel wires carrying current	$F = \frac{\mu_0 I_1 I_2}{2\pi R}$
12	Torque on a current carrying loop	$\tau = (\mathbf{m} \times \mathbf{B})$ Where \mathbf{m} is the magnetic moment of the dipole and magnitude of magnetic moment is $m = NIB$ where A is the area of the loop and N is the number of turns in the loop.
13	Lorentz force	Force on electron moving with velocity \mathbf{v} in presence of both uniform electric and magnetic field is $\mathbf{F} = -e(\mathbf{E} + \mathbf{v} \times \mathbf{B})$
14	Magnetic dipole moment of bar magnet	$\mathbf{m} = q(2\mathbf{a})$ where q is the pole strength and $(2\mathbf{a})$ is the length of the bar magnet. It is the vector pointing from south to north pole of the magnet.
15	Torque on the bar magnet	$\tau = \mathbf{m} \times \mathbf{B}$
16	Potential energy of a magnetic dipole	$U = -mB\cos\theta$