

Class 12 - Important Formulas

Chapter 2 - Electric Potential and Capacitance

Electric Potential

S.No.	Term	Description	
1	Electric	ΔU=-W	
	Potential	Where ΔU = Change in Potential energy and W= Work done by the electric	
	energy	lines of forces	
		For a system of two particles	
		$U(r)=q_1q_2/4\pi\epsilon r$	
		where r is the separation between the charges.	
		We assume U to be zero at infinity	
		Similarly for a system of n charges	
		U=Sum of potential energy of all the distinct pairs in the system	
		For example for three charges	
		$U=(1/4\pi\epsilon)(q_1q_2/r_{12}+q_2q_3/r_{23}+q_1q_3/r_{13})$	
2	Electric PE of	=qV where V is the potential there	
	a charge		
3	Electric	Liken Electric field intensity is used to define the electric field; we can also	
	Potential	use Electric Potential to define the field. Potential at any point P is equal to	
		the work done per unit test charge by the external agent in moving the test	
		charge from the reference point(without Change in KE)	
		$V_p = W_{ext}/q$	
		So for a point charge	
		V _p =Q/4πεr	
		where r is the distance of the point from charge	
4	Some points	1. It is scalar quantity	
	about	2. Potential at point due to system of charges will be obtained by the	
	Electric	summation of potential of each charge at that point	
	potential	$V=V_1+V_2+V_3+V_4$	
	•	3. Electric forces are conservative force so work done by the electric force	
		between two point is independent of the path taken	
		4. $V_2 - V_1 = -\int E dr$	
		5. In Cartesian coordinates system	
		dV=-E.dr	
		$dV = -(E_x dx + E_y dy + E_z dz)$	
		So $E_x = \partial V/\partial x$, $E_y = \partial V/\partial y$ and $E_z = \partial V/\partial z$	
		Also	
		$E = -[(\partial V/\partial x)i + (\partial V/\partial y)j + (\partial V/\partial z)k]$	
		6 . Surface where electric potential is same everywhere is call equipotential	
		surface	
		Electric field components parallel to equipotential surface is always zero	
5	Electric	A combination of two charge +q and -q separated by the distance d	
	dipole	p=qd	
		Where d is the vector joining negative to positive charge	
6	Electric	$V=(1/4\pi\epsilon)(p\cos\theta/r^2)$	
	potential due	where r is the distance from the center and θ is angle made by the line from	
	to dipole	the axis of dipole	
7	Electric field	$E_{\theta} = (1/4\pi\epsilon)(p\sin\theta/r^3)$	
	due to dipole	$E_r = (1/4\pi\epsilon)(2p\cos\theta/r^3)$	
		Total $E=\sqrt{E_{\theta}^2+E_r^2}$	

		$=(p/4\pi\epsilon r^3)(\sqrt{(3\cos^2\theta+1)})$ Torque on dipole= $\mathbf{p}X\mathbf{E}$ Potential Energy U=- $\mathbf{p}.\mathbf{E}$	
8	Few more points	1. [E.d] over closed path is zero 2. Electric potential in the spherical charge conductor is Q/4nsR where R is the radius of the shell and the potential is same everywhere in the conductor 3. Conductor surface is a equipotential surface	

Capacitance

S.No.	Term	Description
1	Capacitance C of the capacitor	C=q/V or q=CV -Unit of capacitance is Farads or CV ⁻¹ capacitance of a capacitor is constant and depends on shape, size and separation of the two conductors and also on insulating medium being used for making capacitor.
2	Capacitance of parallel plate cap	
3	parallel plate air capacitor in presence of dielectric medium	C=εA/d
4	Capacitance of spherical capacitor having radii a, b (b>a)	(a) air as dielectric between them C=(4πε ₀ ab)/(b-a) (b) dielectric with relative permittivity ε C=(4πεab)/(b-a)
5	Parallel combination of capacitors	$C=Q/V=C_1+C_2+C_3$, resultant capacitance C is greater then the capacitance of greatest individual one.
6	Series combination of capacitors	$1/C=1/C_1+1/C_2+1/C_3$, resultant capacitance C is less then the capacitance of smallest individual capacitor.
7	Energy stored in capacitor	Energy stored in capacitor is $E=QV/2$ or $E=CV^2/2$ or $E=Q^2/2C$ factor $1/2$ is due to average potential difference across the capacitor while it is charged.
8	Force between plates of capacitor	$F = \frac{Q}{2K\varepsilon_0 A}$
9	Force per unit area of plates	$= \frac{\sigma^2}{2K\varepsilon_0}$ Where σ is charge per unit area.